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The images formed by a concave grating used at grazing inkidence are constructed b y a  ray-tracing 

method. The method, equivalent to a recently developed procedure of Spencer and Murty, can be used for 
anv configuration of grating and object. The results are compared with a third-order approximate theory 
fo; the case of rays paralleyto the Rowland plane. 

INTRODUCTION 

ECENTLY, the imaging properties of diffraction R gratings have been discussed from several points 
of view. Namioka'.? has studied the aberrations of 
concave gratings, using Fermat's principle. Spencer and 
Mur ty  have developed a general ray-tracing procedure 
which includes gratings as elements of complete optical 
sys tems . 

In the present work a ray-tracing method equivalent 
to that of Spencer and Murty is used to obtain the 
images formed by a concave grating used a t  grazing 
incidence, a configuration which is very important in 
space spectroscopy. 

The results are compared with computations using 
an equation derived by Behring* from Fermat's principle 
for the special case of light rays initially parallel to the 
Rowland plane. 

LIST OF SYMBOLS 

.A (X,Y,Z)--object point 
B(s,y,z)-image point 

Y(xl,yl,zl)-point on grating 
C(R,O,O)-center of curvature of grating 

D-vector with direction cosines as coni- 
ponents 

p=[z1?+ (R-."1)"-f 
(1= [ (R-  .c1)2+y1"zly 

-\=matrix of transfomiation between (.r,y,z) 

A =  matrix of quadric coefficients 
and (x',y',z') systems 

DESCRIPTION OF METHOD 

From any specified object point (X,Y,Z)  (which need 
not be on the Rowland cylinder) a ray is constructed 
which impinges on the grating a t  the point (xlylzl). The 
elemental part of the grating centered on (zIylcl) is 
considered to be a plane grating whose plane is that of 
the tangent plane to the spherical surface (Fig. 1); the 
rulings on this elemental plane grating are the projection 

IT. Samioka, J.  Opt. SOC. ;Zm. 49, 446 (1959). 
* T. Samioka, J .  Opt. SOC. Am. 49, -160 (1959). 
3 G. H. Spencer and M. V. R.  K. Murty, J. Opt. SOC. Am. 52. 

672 (1962). 
W. E. Behring (private communication). 

- 
of the actual rulings on to the tangent plane. The 
direction of the resulting diffracted ray is then deter- 
mined by the diffraction equation5 

rnl  u= (sina+siM) cod, (1) 

in which the parameters a,@ are compdted relative to 
the elemental plane grating, as illustrated in Fig. 2. 

The intersection of the diffracted ra>- with any desired 
surface is then obtained and is the image point corre- 
sponding to the given incident ray. This imaging surface 
is ~nn!! \ -  the Ro\.;!and c;,.!inder, ei a q-!inder centered 
on the grating in the case of an  exit slit whose plane i i  
normal to the grating pole-slit line. 

In this way, b> having incident ra? s from one object 
point impinge on a net of points on the grating, and 
repeating this process for a desired net of object points, 
the image distribution is obtained. 

DETAILS OF CALCULATION 

Derivation of Elemental Grating 

In the following, each point such as -4 (X ,Y ,Z)  is 
considered to have vector A associated with i t ,  the 
coniponents of A being (X ,Y ,Z) .  

Let the object point be 4 (X ,Y ,Z)  : the incident'ray 
from it to an arbitrary point P(slylcl) on the grating 

z 

ELEMENTAL 
/TANGENT PLANE 

GRATING AT 
P(x, YAi) 

I AXIS 

y (OUT OF PAPER) 

\ 

POLE AT (0,O.O) 

1 . i ~ .  1. Concave grating and coordinate system, illustrating 
also an elemental tangent plane grating. 

c. s, Rupert, 3 .  Opt. soc. Am. 42, 779 (1952). 
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1 
Dz’ = 

has the parametric line equation 

R-x~ IR-x~ 

-y1 = q  -y1 . (9) 

where s is the distance of point x(x,y,z) from 1’. 

then the normal a t  P has the equation: 
If C(R,O,O) is the center of curvature of the grating, 

s (C- P) 
x- P+ 

[ (R- Xl)?+yl?+zlq4’ 

where s is the distance of point x ( s , y , z )  from 1’ along 
the normal. 

Since the grating sphere equation is 

[(R-xl)~+y?+z?]: 

(x- R)’+y2++z” = R’ 9 (4) 

the equation of the tangent plane at  P(xly1zl) i y  

(s l -R)(s-R)+yly+c]z= R2. (51 

The equation of the projection of the ruling a t  P(x1y1z1) 
onto this tangent plane results from the intersection of 
the plane y= yl with this tangent plane, being therefore 

(x1- R)  (x - R) + y1’+ 212 = RY. (6) 

Application of Grating Equation 

The tangent plane, with projected rulings on it, is the 
elemental plane diffraction grating mentioned earlier. 
The incident ray at  P(xIylzI) produces a diffracted ra!- 
leaving this elemental grating according to the equation 

mX ue= (sina+sinp) cod, (;a) 

(7b) 
where 

u‘e= u/ [ 1 - (YJR)~]’, 

u, being a slowly varying function of yl because the 
actual ruling does not have a constant separation in the 
assumed type of grating. The reference plane in which 
Q and /3 are measured is the plane through P(x1ylz) 
which is normal to the line (6). This plane is now 
considered to be the x‘, y’ plane of a new coordinate 
system (2’ y’ z’), whose x’ axis is the grating normal at  
P,  and whose z’ axis is the projected line (6). 

- -~~ ~~ 
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FIG. 2. Angles of diffraction equation ( l ) ,  referretl 
to an elemental plane grating. 

Thus the new z’ axis has the direction cosine vector 

in which the angle between this line (12) and the normal (x’ 
ZlX+ (R-xJZ-zJ? axis) : c; = (13) 

z?+ (R-x1)2 COSQ = T/’d [X - UZ1- x11CR- XI]+ [ U -  yJ[ - yl] 
The angle CY of the diffraction formula (7a) is + [ Z -  U(R-~I)-ZI][-ZI]}, (14a) 

. 
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+ [ Z -  U ( R - x i ) - z 1 ~ } - f .  (14b) 

Similarly, the angle 6 of the diffraction formula is the XD= 
angle between P A  and PN and is therefore given by 

DZz‘ cod cosB+DZUr cod sin/3+ DZz’ sin6 
DUz’ cod COS@+ D,u’ cod six@+ DVL’ sin6 + yl , 
D,”’ cod cosp+ D,”‘ cod si@+ Dzzt sin6 

x1 

21, 

.- 

+[’- U(R-x1)-z11CZ-z13’y (‘’a) 

W = [ ( X - x l ) 2 +  (Y-yl)z+(Z-z1)2]-*.  (1Sb) 

remembering that the origin of the (x’,y’,z’) system is 
the point P(xlylz l ) .  

The equation of the diffracted ray is now written 

in which 

A =  

down as The diffraction angle 8, in the new coordinate system 
(x’y’z’), can now be obtained as 

1 0 0 - R / 2  
0 1 0  0 
0 0 0  0 ’  

x= P+s(xo-P)T, 

sins = (mA/re cod) - sina. (16) 

To get the direction of the diffracted ray in the 
(x’y’z’) system, then, we must rotate some point 
initially on the axis through an angle p in the PCN 
plane, and then perform a second rotation on the point 
to bring it cif the the angle 6, both rotations 
being performed in appropriate directions. The situation 
is illustrated in Fig. 2. This is the usual transformation 
in spherical polar coordinates (r,0,4) : 

where T is a normalizing factor. 

IMAGE POINTS 

TO find the intersection of this diffracted ray with 
the Rowland cylinder, we can conveniently Use the 
matrix method described by Heading6 as follows. If 
the iiilr equaikil iS R’-W;-!-lh, and the quadric equa- 
tion is wTAw=O, where W1 does not lie on the quadric, 
then the intersection values of s are given by 

s= r sin0 cos+, (WIT+shT) A(wl+sh)=O (21a) 
y= I sin0 sin& (17) 

or, expanding, 
Z= r cos0, 

except that here 6= ( ~ / 2 ) - 0 ,  p=4, so that WiTAWi+S(hTAW1+W1TAh)+S2hTAh=0 (21b) 

x’= cod cosp, In  the notation of the present problem, this equation is : 
y’= cod sin#?, (18) 
z‘= sins, 

taking (1,0,0) as the original point on the x’ axis. It 
should be noted that the sign of 6 must always be taken 
opposite to that of the z’ coordinate of the object 
point A .  

Xow, (s’,y’,z’) are the coordinates of a point RD’ on 
the diffracted ray, in the new system. To obtain this 
point’s coordinates in the original system we must 
transform these coordinates by the matrix 1 DZz‘ Dzy‘ DZd 

A= D,I’ DyU’ Duzri. (19) 
jDZZ’ D,”’ DZL‘! I and the components of L are 

L,= T [ q ( R - x l )  cod coso+pqyl(R-xl) cod sinB+pzl sin61 = T H ,  
L,= T { q ( -  y l )  cod cosp+pq[zi2+ ( R - Z ~ ) ~ ]  cod sin@} = T J ,  
Lz= T [ q ( - z l )  cod cosS+pq(- ylz1) cod sin@+p(R-xl) sin6]= TIC, 

in which centered cylinder of radius r is desired, A is given 
T =  (82+P+K2)-#. (2jb) instead by 

6 J. Heading, Matr ix  Theory for Physicists (Longmans Green 
If the intersection of the diffracted ray with a grating- and Company, Inc., New York, 1958), Chap. 111. 
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A = O  

FIG. 3.  Images (solid line) obtained by ray-tracing method compared with images (dashed line) obtained from third-order theory 
(diffraction order m =  +l) .  Curves are illustrated for values of y l / R  of: (1) -0.01, (2) -0.005, (3)  0.0, (4) 0.005, (5) 0.01. 

1 0 0  0 
0 1 0  0 

0 0 0 -r2 APPLICATION TO A SPECTROMETER 

a net of j grating points for each object point. Thus i . j  
image points are obtained. 

(26) 0 0 0 * 

The algebraically larger value of s is used in all cases. 

I COMPUTER USE OF THE EQUATIONS 

For a given angle of incidence, a single central ray is 
calculated; Le., the incident ray lying in the Rowland 
plane and impinging on the pole (O,O,O) of the grating. 
The intersection of the diffracted ray with the Rowland 
cylinder is found. This gives the radius rc of the grating- 
centered cylinder upon which the image is to be formed, 
assuming that we want the image in a surface normal 

run can then be made using a net of i object points, and 
I to the line from the image to the grating pole. A multiple 

The procedure developed in the foregoing sections 
has been applied to the problem of image formation in 
a grazing incidence spectrometer designed for observa- 
tion of the solar extreme ultraviolet spectrum from the 
first orbiting solar observatory. This case corresponds 
to observation of an extended source a t  a very great 
distance from the entrance slit. Under such circum- 
stances a beam of nearly parallel radiation from each 
element of the source illuminates the entire entrance slit 
so that the direction cosines for the incident rays from 
a specified element of the source can be taken as the 
same for every point on the grating which is illuminated 
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TABLE I. Values of 00, the central ray diffraction angles, corre- 
sponding to angles of incidence a" and wavelength X used for the 
curves of Fig. 3 (m=+l) .  

-.__ 

50 d 100 ii 300 d 
88" 85" 12.7 83" 31.8 79" 8.8 
86" 85" 5.4 82" 40.0 78" 36.2 

through the (infinitely narrow) entrance slit. For ease 
of comparison with an approximate (third-order) 
theory, it is assumed that the beam of radiation is 
parallel to the Rowland plane. This is justified only 
because in the case being considered (observation of 
the sun), the maximum deviation from this plane is 
only 0.005 rad. 

Rays satisfying the above assumptions were selected 
from a more general machine ray tracing computation 
for angles of incidence of 88" and 86". The results are 
given in Fig. 3 for several different values of the angle 
of diffraction&. I n  each case a 5x5 net of grating points 
was used correspending tc! vz!ues of y:,IR=C), f0.005, 
f0.01, where y l  is the horizontal distance of the 
illuminated grating point from the pole of the grating 
and R is the radius of curvature of the grating. The 
distances of the grating points from the Rowland plane 
were taken as 0, f0.5, and fl.O cm. For a=0.00017361 
cm, R= 100 cm the wavelengths corresponding to 
values of specified in Fig. 3 are given in Table I. 
Values of AB cosa are directly convertible into AA using 
the differentiated grating equation. The values of 
v1/R=f0.005 correspond to images formed by those 
portions of the solar limb lying in the Rowland plane 

and represent the maximum deviations from the image 
formed by the central ray from the center of the sun. 

It should be pointed out that these images are ob- 
tained for the specified values of (Y and @ in any grating 
system for values of yl/R equal to 0.01 and 0.005. The 
values of wavelength for which the results apply are 
found using the grating equation. 

An inspection of the figures reveals the improvement 
in image quality obtained either by reducing the angle 
of incidence (Y or the value yl/R. They show also how 
the curves based on third-order theory depart from the 
exact ray-traced results as the angle of incidence 
increases. 

CONCLUSIONS 

The ray-tracing method developed for a concave 
grating enables one to obtain image shapes for all 
configurations in which a concave grating may be used ; 
it can be used equally well at  near normal incidence or 
a t  grazing incidence. I t  serves therefore as a standard 
of comparison against which approximate theories can 
be tested. 

Because of the "ciosed" nature of the caicuiaiioa, 
making its use in a computer program convenient, it is 
possible to generate quickly as many images as may be 
required for spectrometer design purposes. A fern- such 
images have been presented above for the OS0 extreme 
ultraviolet spectrometer. 
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